

AFRL-RY-WP-TR-2020-0250

QUANTITATIVE METRIC AND AUTOMATED
TOOLSET FOR OBFUSCATED LOGIC SECURITY
EVALUATION

Yier Jin

University of Florida

David Pan

University of Texas at Austin

AUGUST 2020
Final Report

Approved for public release; distribution is unlimited.

See additional restrictions described on inside pages

STINFO COPY

AIR FORCE RESEARCH LABORATORY
SENSORS DIRECTORATE

WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320
AIR FORCE MATERIEL COMMAND

UNITED STATES AIR FORCE

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a
collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

August 2020 Final 21 February 2018 – 30 December 2019
4. TITLE AND SUBTITLE

QUANTITATIVE METRIC AND AUTOMATED TOOLSET FOR
OBFUSCATED LOGIC SECURITY EVALUATION

5a. CONTRACT NUMBER
FA8650-18-1-7822

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
62716E

6. AUTHOR(S)

Yier Jin (University of Florida)
David Pan (University of Texas at Austin)

5d. PROJECT NUMBER
N/A

5e. TASK NUMBER
N/A

5f. WORK UNIT NUMBER
 Y1R1

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
 REPORT NUMBER

University of Florida
Gainesville, FL 32611

University of Texas at Austin
Austin, TX 78712

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
 AGENCY ACRONYM(S)

Air Force Research Laboratory
Sensors Directorate
Wright-Patterson Air Force Base, OH
45433-7320
Air Force Materiel Command
United States Air Force

Defense Advanced Research
Projects Agency
DARPA/MTO
675 North Randolph Street
Arlington, VA 22203

AFRL/RYDT
11. SPONSORING/MONITORING
 AGENCY REPORT NUMBER(S)

AFRL-RY-WP-TR-2020-0250

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
This report is the result of contracted fundamental research deemed exempt from public affairs security and
policy review in accordance with The Under Secretary of Defense memorandum dated 24 May 2010 and
AFRL/DSO policy clarification email dated 13 January 2020. This material is based on research sponsored by
the Air Force Research Lab (AFRL) and the Defense Advanced Research Agency (DARPA) under agreement
number FA8650-18-2-7833. The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes not withstanding any copyright notation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of Air force Research Laboratory (AFRL) and Defense Advanced
Research Agency (DARPA) or the U.S. Government. Report contains color.

14. ABSTRACT
In this final report, we describe the project outcome, NEOS, a C++ software framework which implements the
majority of state-of-art netlist obfuscation/deobfuscation algorithms. The API of NEOS allows for easy
extension and modification of (de)obfuscation algorithms.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT:

SAR

8. NUMBER OF
PAGES
 8

19a. NAME OF RESPONSIBLE PERSON (Monitor)
a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

 Pompei Orlando
19b. TELEPHONE NUMBER (Include Area Code)

N/A
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39-18

DARPA OMG Final Report:
Quantitative Metric and Automated Toolset for

Obfuscated Logic Security Evaluation
Yier Jin

Electrical and Computer Engineering Department
University of Florida
Gainesville, Florida

Email: yier.jin@ece.ufl.edu

David Pan
Electrical and Computer Engineering Department

University of Texas at Austin
Austin, Texas

Email: dpan@ece.utexas.edu

Abstract

In this final report, we describe the project outcome, NEOS, a C++ software framework which
implements the majority of state-of-art netlist obfuscation/deobfuscation algorithms. The API of NEOS
allows for easy extension and modification of (de)obfuscation algorithms.

I. INTRODUCTION

Due to the high costs of maintaining facilities for deeply scaled integrated-circuit manufacturing, semiconductor
companies outsource fabrication to consolidated fabs. This has raised serious concerns regarding malicious
modification of designs and reverse-engineering leading to IP theft. Logic locking thwarts these threats by adding
programmability to the design, so that the IC will not be operational unless configured correctly post-fabrication by
a secret key. Split-manufacturing is based on simply fabricating upper layers with larger feature sizes in a trusted
facility. IC camouflaging is based on inserting nano-device structures in the fabricated IC that are difficult to reverse
engineer by end-users.

While implementing these schemes requires different technologies and design/manufacturing flows, from an
attacker’s perspective, all these schemes (more true for locking/camouflaging) can be modeled with somewhat
similar mathematics: as transforming a circuit 𝑐𝑐𝑜𝑜(𝑥𝑥) to 𝑐𝑐𝑒𝑒(𝑥𝑥,𝑘𝑘) by adding 𝑙𝑙 additional inputs/variables 𝑘𝑘 called
key-inputs which model the netlist’s ambiguity to the attacker. Given this, the goal of the attacker is to recover
𝑐𝑐𝑜𝑜 given 𝑐𝑐𝑒𝑒. An oracle-guided attacker is one that in addition to 𝑐𝑐𝑒𝑒 has black-box access to 𝑐𝑐𝑜𝑜. In practice this
means that the attacker has an operational IC that he/she can use to test chosen input patterns and observe outputs.
Security of an obfuscation scheme heavily depends on the observability that the attacker has on the circuit. For
example, without full scan-chain access, an oracle-guided attacker will have to reason about sequential behavior
which is a much more complex computational task.

The development of better and better obfuscation schemes has been followed by the invention of more and more
powerful attacks. Access to high-performance obfuscation and deobfuscation software is critical to research in
these areas as it removes the need to build existing algorithms from scratch. With this in mind, this report
presents a 25K-lines-of-code C++ object-oriented framework that implements a myriad of existing (de)obfuscation
algorithms, along with an easy-to-use and extendable API that is discussed herein.

II. NETLIST REPRESENTATION

The first step of developing any netlist-based software tool is representing the netlist itself. NEOS supports two
main objects/classes circuit and aig for storing netlists. Both use a custom C++ container to keep nodes that
are accessed by unique IDs. The custom data-structure allows for dynamic removal of nodes while supporting
array-like fast indexing. circuit supports hierarchical designs with primitive gates (and/nand/xor/xnor/...) and
instances from a standard-cell library. Netlists in circuit are represented by an array of gate and wire objects
that link to each other with fanout and fanin sets. circuit supports reading-in designs from a gate-level verilog
(supporting ranged/indexed net definitions) and bench files. The read-in is based on parsers written in Flex/Bison.
Key inputs are specified by starting the wire-name with keyinput.

1
Approved for public release; distribution is unlimited.

mailto:yier.jin@ece.ufl.edu
mailto:yier.jin@ece.ufl.edu
mailto:dpan@ece.utexas.edu

circuit objects can be converted to aig objects which store structurally-hashed [1] And-Inverter-Graphs
(AIG). AIGs, which are used in almost all modern verification/circuit-reasoning engines, are a great way to represent
the circuit in a library-free manner with uniform nodes. AIGs allow for various simplification algorithms due to
their semi-canonical nature. NEOS implements several of these including one-level hashing, k-cut-sweeping and
DAG-aware rewriting [1].

NEOS supports various graph algorithms for AIGs and circuits. DAG algorithms including local/global-
topological-sorting, feedback-arc-set, transitive-fanin/fanout are necessary to many (de)obfuscation algorithms which
both objects support. These objects support editing operations such as removing and adding individual nodes as well
as adding/inserting other objects of the same type (compounding). Another important category of DAG algorithms
is partitioning. NEOS supports k-cut enumeration/detection which finds (fanout-free) logic cones in the circuit for
both circuit and aig objects. This is crucial in an array of obfuscation schemes such as LUT-insertion since in
LUT-insertion any k-cut can be replaced with a k-input LUT. In addition, NEOS supports equal-partitioning which
will try to partition the circuit into similarly-sized sub-graphs. This is a great tool for performing density-minimizing
obfuscation.

The netlist classes also include other important member functions such as combinational/sequential pattern
simulation and error-checking.

III. OBFUSCATION ALGORITHMS

Given the above netlist representation and graph algorithms, it is possible to build the majority of obfuscation
schemes. Obfuscation algorithms are significantly less complicated than deobfuscation algorithms. It is possible to
divide obfuscation algorithms to those studied before the invention of the oracle-guided SAT attack (traditional)
and those that followed the SAT attack and try to specifically mitigate it (SAT-resilient).

The majority of traditional schemes are based on throwing various key-controlled/ambiguous elements into the
circuit. Many various flavors of these schemes can be built using the netlist representation and the supported DAG
algorithms, plus pattern simulation. NEOS implements an array of such traditional schemes including, random-
X(N)OR/MUX/LUT insertion [2], insertion driven by error-rate cost-functions with hill-climbing, insertion in
locations with maximum hamming-distance [3], and insertion of parity units (parity functions are hard to learn with
shallow learners per computational learning theory). The hill-climbing obfuscation algorithm is a very important
module as it can be used to optimize any given metric. This scheme is hence given its own object with a cost-function
that can be replaced any C++ function which allows for easy extension.

A major part of the obfuscation-suite is dedicated to interconnect locking by inserting multiplexer (MUX) and
tri-state-buffers. The interconnect locking suite supports cross-bar/MUX-network insertion [4] with different site-
selection strategies (random, cost-function driven, k-cut, ...). The interconnect locking suite also includes a hill-
climbing strategy which can be designed to maximize metrics such as feedback-arc-set size, graph density, minimum
density for equal coverage of the netlist and so on [5].

Almost all SAT-resilient schemes rely on point-functions which are able to hide a small number of points in the
circuit’s truth-table from the attacker. These schemes try to achieve the Exact-Functional-Secrecy (EFS) notion of
security per [6]. EFS security is defined loosely as: “the attacker should not be able to learn the precise functionality
of the circuit in time t ”. This notion is stronger than key-recovery: “the attacker should not be able to recover
the correct key in time less than t”. It also allows for the attacker to approximate the circuit with exponentially
good accuracy and is hence not suited for designs where approximation by attackers is a concern. As for EFS
obfuscation, NEOS supports numerous schemes. Anti-SAT [7] with functional/structural obfuscation, DTL [8] with
various insertion strategies, and corrupt-and-correct schemes [9].

While the above mentioned schemes are part of the body of research on obfuscation, we now know that the most
secure form of EFS schemes is ones in which an existing (multi)-point-function in the circuit is detected and replaced
with a look-up-table which NEOS supports [10]. These approaches are more secure since the reductive nature means
that the attacker cannot simply remove added structures. One particular scheme that NEOS implements is based
on using SAT-calls to identify all the input patterns that activate a particular net and if the number is smaller than
a given size, then it is replaced with a look-up-table. In addition, NEOS supports the “larger-than-z” look-up-table
from [6] which tricks the attacker into thinking that there are additional hidden patterns that need to be found by

2
Approved for public release; distribution is unlimited.

querying the entire input space.

IV. DEOBFUSCATION ALGORITHMS

NEOS implements deobfuscation algorithms in an object-oriented and polymorphic way. The simplest (top in the
class hierarchy) deobfuscation object is an oracle-less class which includes only the obfuscated circuit 𝑐𝑐𝑒𝑒. The
object upon execution of the attack will return a correct key or a key hypothesis with probability values attached to
the guessed key-bits. An oracle-guided attack object which derives from this topmost class has an additional oracle
object 𝑐𝑐𝑜𝑜. This class will take care of linking the input-outputs of 𝑐𝑐𝑜𝑜 and 𝑐𝑐𝑒𝑒 and error-checking. 𝑐𝑐𝑒𝑒 and 𝑐𝑐𝑜𝑜 can be
sequential for which a different class is used.

The interface of the attacks (obfuscated/oracle circuit as the input and and key-hypothesis as the output) allows
for chaining together various attacks. This is particularly useful in attacks that can guarantee the correctness of some
key bits which allow for simplifying the circuit and continuing with another or the same attack. The key-hypotheses
can also be chained by weighted adding of probability values attached to keys.
A. Combinational Deobfuscation
In combinational deobfuscation the circuit 𝑐𝑐𝑜𝑜 and 𝑐𝑐𝑒𝑒 are both stateless. Oracle-guided attacks in literature have
mostly focused on this case with the SAT-attack being the most prominent. The SAT attack has the unique ability
to guarantee the recovery of a correct key if the original hypothesis model is expressive enough to include the
original circuit (there exists 𝑘𝑘∗ for which 𝑐𝑐𝑒𝑒(𝑥𝑥,𝑘𝑘∗) agrees with 𝑐𝑐𝑜𝑜(𝑥𝑥) on all input patterns).

SAT attacks use SAT queries to guide the deobfuscation process. Similar to SAT-based verification or equivalence
checking, in SAT attacks circuits are built to represent a specific condition and then converted to Conjunctive-
Normal-Form (CNF) formulae. In the baseline SAT attack a mitter condition is formed by building the circuit
𝑀𝑀 ≡ (𝑐𝑐𝑒𝑒(𝑥𝑥,𝑘𝑘1) ≠ 𝑐𝑐𝑒𝑒(𝑥𝑥,𝑘𝑘2). If this circuit is converted to CNF and satisfied with a SAT solver, the 𝑥𝑥� that is
returned by the solver is called a discriminating input pattern (DIP). This input pattern if queried on the oracle, is
guaranteed to trim the hypothesis key-space by at least one wrong key. Then the correct input-output observation
condition is built as (𝑐𝑐𝑒𝑒(𝑥𝑥�,𝑘𝑘1) = 𝑐𝑐𝑜𝑜(𝑥𝑥�)) which will be a new circuit and its output must be ANDed with 𝑀𝑀 and
the process is repeated.

NEOS implements various transforms for building and compounding such circuits/conditions. NEOS implements
an API for converting circuits to SAT formulae. This conversion happens to have a relatively significant impact
on the performance of SAT solving. Currently NEOS supports the baseline Tseitin transform in addition to the
technology-mapping algorithm from [11]. Both techniques will add a set of clauses to a solver and producing a
mapping between wires in the circuit and variables in the solver. An important feature which is very important for
incrementally building and solving SAT problems is that the CNF conversion can take as input a set of pre-existing
variables/wires, in which case the conversion will not create new variables for these nets. This for instance can be
used to stitch a new copy of the circuit to an earlier CNF, connecting the input variables rather than duplicating
them.

Currently NEOS interfaces to three SAT solvers Glucouse, MiniSAT, and CryptoMiniSAT with Glucouse being
the default and preferred choice due to solver simplification and the support for copying solvers. Copying solvers
is critical to many advanced deobfuscation routines which will fail until we add copy support to other solvers. The
solvers are wrapped with a parent class which has a unified interface. This allows developers to add other solvers
by simply replicating and implementing the solver API.

NEOS implements almost all existing SAT based deobfuscation attacks. In addition to the baseline SAT attack
[12] NEOS implements AppSAT [8] which is a SAT based attack that is aware of the error rate of the hypothesis
key and can hence be terminated earlier in cases where approximation is sufficient. It also implements (t)-DDIP
and AppSAT termination conditions [8] which allow for early termination in certain cases. For instance, these
termination conditions can signal termination when the error rate of an l-bit key is less than a small t.

The SAT based attacks are also implemented in an object-oriented manner with many optimization techniques
that can be applied to any of the attacks. For instance various subkey extraction schemes are supported. First is
the simple backbone-analysis [12] which given a condition on the key 𝜙𝜙(𝑘𝑘), will perform a SAT solver query on
each key bit and determine if given 𝜙𝜙(𝑘𝑘) a particular key bit is resolved. A stronger subkey extraction routine is

3
Approved for public release; distribution is unlimited.

the wire-disagreement analysis which can find multiple settled key-bits if they fall in the fanin cone of the same
internal net in the circuit [8].

The synergy between circuits and Boolean conditions and CNF formulae means that simplifying circuits will
result in simpler formulae and faster SAT solving. An opt module is included in NEOS which supports various
simplification routines for both circuit and aig classes. aig simplification routines are faster due to the
AIG-specific sweeping algorithms. NEOS currently supports SAT-sweeping which uses SAT solver calls to find
equivalent nodes in the circuit and merges them. The aig class supports the fast Fraig SAT-sweeping algorithm [13]
which is orders of magnitude faster than the circuit class’s SAT-sweep which uses the baseline counter-example
driven algorithm. Both netlist representations support BDD-sweeping which derives the BDD of internal nets up
to a given BDD size bound and finds equivalent nodes. Note that only SAT-based simplification can use external
conditions which are needed when simplifying circuits further given current input-output pairs observed in the
attack. Simplifying key-conditions called key-condition-crunching (KC2) [14] can be applied to various attacks as
well. Note that all sweeping techniques (equivalent node detection) are derived from the class Sweep. A separate
analysis and commit stage allows for finding nodes but not merging them which is useful in many instances.

Cyclic SAT attacks are implemented in NEOS as well. These are attacks that can deobfuscate circuits that include
intentional combinational cycles [15]. The IcySAT attacks [16] are the most recent and strongest algorithms for
cyclic deobfuscation which are implemented in NEOS. Furthermore, the analysis step in the Sweep class can be
used to find equivalent nodes and then merging them in reverse-topological order can create cyclic-yet-combinational
circuits which are much harder to deobfuscate.

NEOS implements statistical attacks as well in the stat module. Most importantly the hill-climbing attack [17]
which uses a simulated-annealing algorithm to optimize a key. The listing below shows a code snippet for reading
in, obfuscating and deobfuscating the c432 benchmark.

circuit co; co.read_bench("./bench/c432.bench");
circuit ce = co;
enc::enc_xor_rand(ce, random_boolvec(32));
dec::sat_dec_exact(co, ce, iteration_limit);

B. Sequential Deobfuscation
In sequential deobfuscation 𝑐𝑐𝑒𝑒 and 𝑐𝑐𝑜𝑜 are sequential circuits. Sequential deobfuscation is a rather overlooked area
with little tool support due to the increased complexity of the algorithms. In SAT-based sequential deobfuscation,
the SAT query that searches for DIPs is replaced with a model-checking query that searches for a sequence of DIPs
called DISs. NEOS supports sequential attacks using an external model-checker i.e. nuXmv. nuXmv implements
state-of-the-art model-checking routines that can be tweaked to improve the attack.

Having an instance of a model-checker inside the framework so that it can be queried repeatedly without
destroying the SAT-solvers can speed up sequential attacks by 100X [14]. NEOS hence implements several state-of-
the-art model-checking routines through the polymorphic objects without the need for an external checker. The Bmc
class implements bounded-model-checking (BMC) by unrolling and optional simplification at the circuit/AIG/SAT-
solver level. Per Fig. 1, key-condition-crunching [14] techniques are integrated with sequential deobfsucation by
keeping simplified versions of the unrolled circuit and further simplifying them as the condition on the key gets
more constrained throughout the attack. Condition simplification is significantly more important in the problem
of sequential deobfuscation, as sequential deobfuscation SAT formulae sizes grow at much higher rates. This is
because as the discriminating input sequences get deeper, larger and larger circuit conditions need to be added to
the solver. However, the added conditions have lots of redundancy due to the unrolling.

NEOS implements a sequential version of the hill-climbing attack which is surprisingly successful in
approximating the functionality of large sequential circuits with user-provided parameters such as number of
random patterns to query and maximum depth of exploration.

4
Approved for public release; distribution is unlimited.

b aseline

k c2

×105

8

6

4

2

0

0 10 20 30 40

depth
Fig. 1: Sequential SAT attack on the s400 benchmark with 36 key-bits with and without key-condition-crunching (KC2). KC2 enables
reaching further into the state-space with low clause count.

V. MISCELLANEOUS

NEOS implements a simple flow for oracle-less analysis. This involves a module for keeping track of how key-
logic transforms with resynthesis. NEOS has an interface to ABC which is used for various tasks including model-
checking, equivalence checking and simplification. ABC’s routines for circuit simplification are a result of a decade
of development at Berkeley and are the fastest when it comes to circuit compression.

NEOS interfaces to the Cudd BDD package which is used to translate circuits/AIGs into BDDs. This can be
used to implement BDD based (de)obfuscation as well. The BDD package is also used to perform cube operations
used in several aspects of obfuscation.

NEOS has a SAT-based implementation of REFSM [18] that uses an All-SAT routine to mine for states given
a set of state-registers which can be used to deobfuscate FSM-based obfsucation. NEOS supports drawing circuits
to a .dot graph format for visualization per Fig. 2.

(a) original circuit (b) obfuscated circuit

Fig. 2: NEOS obfuscating the s27 circuit. Green inputs are added keys and black-boxes are latches.

0

or

nand

nor 5 2

xor not

4 not nor 3

xor and 1 nor

8 or 6 nor

xor

7

xnor

0

or

2 nand

not nor

nor not 3

and 4 nor 1

or nor

nu
m

 c
la

us
es

5
Approved for public release; distribution is unlimited.

VI. CONCLUSION

In this report we described NEOS a C++ framework for netlist-level circuit obfuscation/deobfuscation. Deobfuscation
attacks are complicated algorithms for which fast available implementations are rare. NEOS promises to fill
this gap by providing an array of existing attacks and defenses for better understanding the problem of netlist
locking/unlocking.

REFERENCES

[1] Alan Mishchenko, Satrajit Chatterjee, and Robert Brayton, “Dag-aware aig rewriting a fresh look at combinational logic synthesis,”
in Proceedings of the 43rd annual Design Automation Conference. ACM, 2006, pp. 532–535.

[2] J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending piracy of integrated circuits,” in Proc. Design, Automation and Test in
Europe, 2008, pp. 1069–1074.

[3] Jeyavijayan Rajendran, Huan Zhang, Chi Zhang, Garrett S Rose, Youngok Pino, Ozgur Sinanoglu, and Ramesh Karri, “Fault
analysis-based logic encryption,” vol. 64, no. 2, pp. 410–424, 2015.

[4] Kaveh Shamsi, Meng Li, David Pan, and Yier Jin, “Cross-lock: Dense layout-level interconnect locking using cross-bar
architectures,” in GLSVLSI, 2018.

[5] Kaveh Shamsi, Meng Li, Travis Meade, Zheng Zhao, David Z. Pan, and Yier Jin, “Cyclic obfuscation for creating sat-unresolvable
circuits,” in GLSVLSI, 2017, pp. 173–178.

[6] Kaveh Shamsi, David Z Pan, and Yier Jin, “On the impossibility of approximation-resilient circuit locking,” in 2019 IEEE
International Symposium on Hardware Oriented Security and Trust (HOST), 2019, pp. 161–170.

[7] Yang Xie and Ankur Srivastava, “Anti-sat: Mitigating sat attack on logic locking,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 38, no. 2, pp. 199–207, 2018.

[8] Kaveh Shamsi, Travis Meade, Meng Li, David Pan, and Yier Jin, “On the approximation resiliency of logic locking and ic
camouflaging schemes,” IEEE Transactions on Information Forensics and Security (TIFS), vol. 14, no. 2, pp. 347–359, 2019.

[9] Muhammad Yasin, Abhrajit Sengupta, Mohammed Thari Nabeel, Mohammed Ashraf, Jeyavijayan JV Rajendran, and Ozgur
Sinanoglu, “Provably-secure logic locking: From theory to practice,” in Proc. ACM Conf. on Computer & Communications Security.
ACM, 2017, pp. 1601–1618.

[10] Meng Li, Kaveh Shamsi, Travis Meade, Zheng Zhao, Bei Yu, Yier Jin, and David Z. Pan, “Provably secure camouflaging strategy for
ic protection,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2018.

[11] Niklas Een, Alan Mishchenko, and Niklas Sörensson, “Applying logic synthesis for speeding up sat,” in International Conference on
Theory and Applications of Satisfiability Testing. Springer, 2007, pp. 272–286.

[12] Pramod Subramanyan, Sayak Ray, and Sharad Malik, “Evaluating the security of logic encryption algorithms,” in Proc. IEEE Int.
Symp. on Hardware Oriented Security and Trust, 2015, pp. 137–143.

[13] Alan Mishchenko, Satrajit Chatterjee, Roland Jiang, and Robert K Brayton, “Fraigs: A unifying representation for logic synthesis and
verification,” Tech. Rep., ERL Technical Report, 2005.

[14] Kaveh Shamsi, Meng Li, David Z Pan, and Yier Jin, “Kc2: Key-condition crunching for fast sequential circuit deobfuscation,” in
2019 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2019, pp. 534–539.

[15] Yuanqi Shen, You Li, Amin Rezaei, Shuyu Kong, David Dlott, and Hai Zhou, “Besat: behavioral sat-based attack on cyclic logic
encryption,” in Proceedings of the 24th Asia and South Pacific Design Automation Conference. ACM, 2019, pp. 657–662.

[16] Kaveh Shamsi, David Z Pan, and Yier Jin, “Icysat: Improved sat-based attacks on cyclic locked circuits,” in 2019 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). IEEE, 2019, pp. 1–7.

[17] Stephen M Plaza and Igor L Markov, “Solving the third-shift problem in ic piracy with test-aware logic locking,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 34, no. 6, pp. 961–971, 2015.

[18] Travis Meade, Zheng Zhao, Shaojie Zhang, David Z. Pan, and Yier Jin, “Revisit sequential logic obfuscation: Attacks and defenses,”
in The IEEE International Symposium on Circuits and Systems (ISCAS), 2017.

6
Approved for public release; distribution is unlimited.

	DARPA OMG Final Report:
	Yier Jin
	David Pan
	depth

	CoverPage.pdf
	afrl-rY-wp-tR-2020-0250

	SF298.pdf
	REPORT DOCUMENTATION PAGE

